After the training or the result has nothing to do with Portuguese but with English, what did I do wrong?
Test on br/clips/test.csv - WER: 1.000000, CER: 0.699375, loss: 89.459923
--------------------------------------------------------------------------------
Best WER:
--------------------------------------------------------------------------------
WER: 0.666667, CER: 0.615385, loss: 32.993889
- wav: file://br/clips/common_voice_pt_19301257.wav
- src: "daqui a pouco"
**- res: "one a too"**
--------------------------------------------------------------------------------
WER: 0.666667, CER: 0.700000, loss: 32.972122
- wav: file://br/clips/common_voice_pt_19287125.wav
- src: "chanceler do tesouro"
**- res: "i do so"**
--------------------------------------------------------------------------------
WER: 0.666667, CER: 0.692308, loss: 22.815779
- wav: file://br/clips/common_voice_pt_19310535.wav
- src: "abra a janela"
**- res: "a ran"**
--------------------------------------------------------------------------------
WER: 0.750000, CER: 0.653846, loss: 90.590782
- wav: file://br/clips/common_voice_pt_19334198.wav
- src: "as praias eram exuberantes"
- res: "as to er er "
My configuration:
python3 DeepSpeech.py --train_files br/clips/train.csv --dev_files br/clips/dev.csv --test_files br/clips/test.csv --train_batch_size 10 --dev_batch_size 10 --test_batch_size 10 --n_hidden 2048 --learning_rate 0.0001 --dropout_rate 0.20 --epochs 75 --lm_alpha 0.75 --lm_beta 1.85 --export_dir export/ --checkpoint_dir export/ --export_language pt --alphabet_config_path alphabet.txt --scorer data/lm/kenlm.scorer