No output on generating voice

I try to train LjSpeech dataset with TTS and multiband-melgan, but in the output I get only noise and no voice at all. Here are the configs that I use:

TTS config:

{
“model”: “Tacotron2”,
“run_name”: “ljspeech-ddc”,
“run_description”: “tacotron2 with DDC and differential spectral loss.”,

// AUDIO PARAMETERS
"audio":{
    // stft parameters
    "fft_size": 1024,         // number of stft frequency levels. Size of the linear spectogram frame.
    "win_length": 1024,      // stft window length in ms.
    "hop_length": 256,       // stft window hop-lengh in ms.
    "frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
    "frame_shift_ms": null,  // stft window hop-lengh in ms. If null, 'hop_length' is used.

    // Audio processing parameters
    "sample_rate": 22050,   // DATASET-RELATED: wav sample-rate.
    "preemphasis": 0.0,     // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
    "ref_level_db": 20,     // reference level db, theoretically 20db is the sound of air.

    // Silence trimming
    "do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (true), TWEB (false), Nancy (true)
    "trim_db": 60,          // threshold for timming silence. Set this according to your dataset.

    // Griffin-Lim
    "power": 1.5,           // value to sharpen wav signals after GL algorithm.
    "griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.

    // MelSpectrogram parameters
    "num_mels": 80,         // size of the mel spec frame.
    "mel_fmin": 50.0,        // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
    "mel_fmax": 7600.0,     // maximum freq level for mel-spec. Tune for dataset!!
    "spec_gain": 1,

    // Normalization parameters
    "signal_norm": true,    // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
    "min_level_db": -100,   // lower bound for normalization
    "symmetric_norm": true, // move normalization to range [-1, 1]
    "max_norm": 4.0,        // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
    "clip_norm": true,      // clip normalized values into the range.
    "stats_path": null   // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
},

// VOCABULARY PARAMETERS
// if custom character set is not defined,
// default set in symbols.py is used
// "characters":{
//     "pad": "_",
//     "eos": "~",
//     "bos": "^",
//     "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ",
//     "punctuations":"!'(),-.:;? ",
//     "phonemes":"iyɨʉɯuɪʏʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑɒᵻʘɓǀɗǃʄǂɠǁʛpbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟˈˌːˑʍwɥʜʢʡɕʑɺɧɚ˞ɫ"
// },

// DISTRIBUTED TRAINING
"distributed":{
    "backend": "nccl",
    "url": "tcp:\/\/localhost:54321"
},

"reinit_layers": [],    // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers.

// TRAINING
"batch_size": 32,       // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
"eval_batch_size":16,
"r": 7,                 // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled.
"gradual_training": [[0, 7, 64], [1, 5, 64], [50000, 3, 32], [130000, 2, 32], [290000, 1, 32]], //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed.
"apex_amp_level": null,     // level of optimization with NVIDIA's apex feature for automatic mixed FP16/FP32 precision (AMP), NOTE: currently only O1 is supported, and use "O1" to activate.

// LOSS SETTINGS
"loss_masking": true,       // enable / disable loss masking against the sequence padding.
"decoder_loss_alpha": 0.5,  // decoder loss weight. If > 0, it is enabled
"postnet_loss_alpha": 0.25, // postnet loss weight. If > 0, it is enabled
"ga_alpha": 5.0,           // weight for guided attention loss. If > 0, guided attention is enabled.
"diff_spec_alpha": 0.25,     // differential spectral loss weight. If > 0, it is enabled

// VALIDATION
"run_eval": true,
"test_delay_epochs": 10,  //Until attention is aligned, testing only wastes computation time.
"test_sentences_file": null,  // set a file to load sentences to be used for testing. If it is null then we use default english sentences.

// OPTIMIZER
"noam_schedule": false,        // use noam warmup and lr schedule.
"grad_clip": 1.0,              // upper limit for gradients for clipping.
"epochs": 100,                // total number of epochs to train.
"lr": 0.0001,                  // Initial learning rate. If Noam decay is active, maximum learning rate.
"wd": 0.000001,                // Weight decay weight.
"warmup_steps": 4000,          // Noam decay steps to increase the learning rate from 0 to "lr"
"seq_len_norm": false,         // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths.

// TACOTRON PRENET
"memory_size": -1,             // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame.
"prenet_type": "original",     // "original" or "bn".
"prenet_dropout": false,       // enable/disable dropout at prenet.

// TACOTRON ATTENTION
"attention_type": "original",  // 'original' or 'graves'
"attention_heads": 4,          // number of attention heads (only for 'graves')
"attention_norm": "sigmoid",   // softmax or sigmoid.
"windowing": false,            // Enables attention windowing. Used only in eval mode.
"use_forward_attn": false,     // if it uses forward attention. In general, it aligns faster.
"forward_attn_mask": false,    // Additional masking forcing monotonicity only in eval mode.
"transition_agent": false,     // enable/disable transition agent of forward attention.
"location_attn": true,         // enable_disable location sensitive attention. It is enabled for TACOTRON by default.
"bidirectional_decoder": false,  // use https://arxiv.org/abs/1907.09006. Use it, if attention does not work well with your dataset.
"double_decoder_consistency": true,  // use DDC explained here https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency-draft/
"ddc_r": 7,                           // reduction rate for coarse decoder.

// STOPNET
"stopnet": true,               // Train stopnet predicting the end of synthesis.
"separate_stopnet": true,      // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER.

// TENSORBOARD and LOGGING
"print_step": 25,       // Number of steps to log training on console.
"tb_plot_step": 100,    // Number of steps to plot TB training figures.
"print_eval": false,     // If True, it prints intermediate loss values in evalulation.
"save_step": 10000,      // Number of training steps expected to save traninpg stats and checkpoints.
"checkpoint": true,     // If true, it saves checkpoints per "save_step"
"tb_model_param_stats": false,     // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.

// DATA LOADING
"text_cleaner": "phoneme_cleaners",
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars.
"num_loader_workers": 4,        // number of training data loader processes. Don't set it too big. 4-8 are good values.
"num_val_loader_workers": 4,    // number of evaluation data loader processes.
"batch_group_size": 4,  //Number of batches to shuffle after bucketing.
"min_seq_len": 6,       // DATASET-RELATED: minimum text length to use in training
"max_seq_len": 153,     // DATASET-RELATED: maximum text length

// PATHS
"output_path": "/home/dias/Downloads/Models/LJSpeech/",

// PHONEMES
"phoneme_cache_path": "/home/dias/Downloads/Models/phoneme_cache/",  // phoneme computation is slow, therefore, it caches results in the given folder.
"use_phonemes": true,           // use phonemes instead of raw characters. It is suggested for better pronounciation.
"phoneme_language": "en-us",     // depending on your target language, pick one from  https://github.com/bootphon/phonemizer#languages

// MULTI-SPEAKER and GST
"use_speaker_embedding": false,      // use speaker embedding to enable multi-speaker learning.
"use_gst": false,       			    // use global style tokens
"use_external_speaker_embedding_file": false, // if true, forces the model to use external embedding per sample instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558
"external_speaker_embedding_file": "../../speakers-vctk-en.json", // if not null and use_external_speaker_embedding_file is true, it is used to load a specific embedding file and thus uses these embeddings instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558
"gst":	{			                // gst parameter if gst is enabled
    "gst_style_input": null,        // Condition the style input either on a
                                    // -> wave file [path to wave] or
                                    // -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15}
                                    // with the dictionary being len(dict) <= len(gst_style_tokens).
    "gst_embedding_dim": 512,
    "gst_num_heads": 4,
    "gst_style_tokens": 10,
    "gst_use_speaker_embedding": false
},

// DATASETS
"datasets":   // List of datasets. They all merged and they get different speaker_ids.
    [
        {
            "name": "ljspeech",
            "path": "/home/dias/Downloads/LJSpeech-1.1/",
            "meta_file_train": "metadata.csv", // for vtck if list, ignore speakers id in list for train, its useful for test cloning with new speakers
            "meta_file_val": null
        }
    ]

}

Vocoder config:

{
“run_name”: “multiband-melgan”,
“run_description”: “multiband melgan mean-var scaling”,

// AUDIO PARAMETERS
"audio":{
    "fft_size": 1024,         // number of stft frequency levels. Size of the linear spectogram frame.
    "win_length": 1024,      // stft window length in ms.
    "hop_length": 256,       // stft window hop-lengh in ms.
    "frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
    "frame_shift_ms": null,  // stft window hop-lengh in ms. If null, 'hop_length' is used.

    // Audio processing parameters
    "sample_rate": 22050,   // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
    "preemphasis": 0.0,     // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
    "ref_level_db": 0,     // reference level db, theoretically 20db is the sound of air.

    // Silence trimming
    "do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
    "trim_db": 60,          // threshold for timming silence. Set this according to your dataset.

    // MelSpectrogram parameters
    "num_mels": 80,         // size of the mel spec frame.
    "mel_fmin": 50.0,        // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
    "mel_fmax": 7600.0,     // maximum freq level for mel-spec. Tune for dataset!!
    "spec_gain": 1.0,         // scaler value appplied after log transform of spectrogram.

    // Normalization parameters
    "signal_norm": true,    // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
    "min_level_db": -100,   // lower bound for normalization
    "symmetric_norm": true, // move normalization to range [-1, 1]
    "max_norm": 4.0,        // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
    "clip_norm": true,      // clip normalized values into the range.
    "stats_path": null    // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
},

// DISTRIBUTED TRAINING
// "distributed":{
//     "backend": "nccl",
//     "url": "tcp:\/\/localhost:54321"
// },

// LOSS PARAMETERS
"use_stft_loss": true,
"use_subband_stft_loss": true,  // use only with multi-band models.
"use_mse_gan_loss": true,
"use_hinge_gan_loss": false,
"use_feat_match_loss": false,  // use only with melgan discriminators

// loss weights
"stft_loss_weight": 0.5,
"subband_stft_loss_weight": 0.5,
"mse_G_loss_weight": 2.5,
"hinge_G_loss_weight": 2.5,
"feat_match_loss_weight": 25,

// multiscale stft loss parameters
"stft_loss_params": {
    "n_ffts": [1024, 2048, 512],
    "hop_lengths": [120, 240, 50],
    "win_lengths": [600, 1200, 240]
},

// subband multiscale stft loss parameters
"subband_stft_loss_params":{
    "n_ffts": [384, 683, 171],
    "hop_lengths": [30, 60, 10],
    "win_lengths": [150, 300, 60]
},

"target_loss": "avg_G_loss",  // loss value to pick the best model to save after each epoch

// DISCRIMINATOR
"discriminator_model": "melgan_multiscale_discriminator",
"discriminator_model_params":{
    "base_channels": 16,
    "max_channels":512,
    "downsample_factors":[4, 4, 4]
},
"steps_to_start_discriminator": 200000,      // steps required to start GAN trainining.1

// GENERATOR
"generator_model": "multiband_melgan_generator",
"generator_model_params": {
    "upsample_factors":[8, 4, 2],
    "num_res_blocks": 4
},

// DATASET
"data_path": "/home/dias/Downloads/LJSpeech-1.1/wavs/",
"feature_path": null,
"seq_len": 16384,
"pad_short": 2000,
"conv_pad": 0,
"use_noise_augment": false,
"use_cache": true,

"reinit_layers": [],    // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers.

// TRAINING
"batch_size": 64,       // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.

// VALIDATION
"run_eval": true,
"test_delay_epochs": 10,  //Until attention is aligned, testing only wastes computation time.
"test_sentences_file": null,  // set a file to load sentences to be used for testing. If it is null then we use default english sentences.

// OPTIMIZER
"epochs": 100,                // total number of epochs to train.
"wd": 0.0,                // Weight decay weight.
"gen_clip_grad": -1,      // Generator gradient clipping threshold. Apply gradient clipping if > 0
"disc_clip_grad": -1,     // Discriminator gradient clipping threshold.
"lr_scheduler_gen": "MultiStepLR",   // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
"lr_scheduler_gen_params": {
    "gamma": 0.5,
    "milestones": [100000, 200000, 300000, 400000, 500000, 600000]
},
"lr_scheduler_disc": "MultiStepLR",   // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
"lr_scheduler_disc_params": {
    "gamma": 0.5,
    "milestones": [100000, 200000, 300000, 400000, 500000, 600000]
},
"lr_gen": 1e-4,                  // Initial learning rate. If Noam decay is active, maximum learning rate.
"lr_disc": 1e-4,

// TENSORBOARD and LOGGING
"print_step": 25,       // Number of steps to log traning on console.
"print_eval": false,     // If True, it prints loss values for each step in eval run.
"save_step": 25000,      // Number of training steps expected to plot training stats on TB and save model checkpoints.
"checkpoint": true,     // If true, it saves checkpoints per "save_step"
"tb_model_param_stats": false,     // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.

// DATA LOADING
"num_loader_workers": 4,        // number of training data loader processes. Don't set it too big. 4-8 are good values.
"num_val_loader_workers": 4,    // number of evaluation data loader processes.
"eval_split_size": 10,

// PATHS
"output_path": "/home/dias/Downloads/Models/LJSpeech/"

}
Any ideas what I did wrong?

Give more info on how long you trained (epochs, steps) and ideally post some images of Tensorboard.

100 epochs each, 195 steps on train_tts.py and 204 on vocoder. I didn’t use Tensorboard for logs

We needed about 100k steps to get somewhat audible results. Did you mean 195k or 195? This would be way too few :slight_smile:

How many samples do you use for training with what total of hours?

Check the output dir. There should be a file with a really long filename which can be started with Tensorboard and you get nice graphics for your training.

If I remember correctly you get that by default. Look for some

195 steps per each epoch which makes it 19500 steps. I used LjSpeech 1.1 ( 13 100 samples with total of ~24 hours)

You should at least hear something, but 20k is not much and not enough for anything useful. Check Tensorboard and you should have audio samples.


Here are losses of training epochs, same for evaluation
I think it is doing fine, just not enough steps.
Thanks for showing Tensorboard! Very useful

These graphs look good for 1.8k, train more and after 5k you should be able to hear samples under the audio tab. And check the images tab, they should be mostly straight lines for dev.

trained vocoder and encoder for 19.5k, looks fine, the output of encoder in audio tab is chaotic noise, it should be like that right? I wonder how much steps are needed for generating something actual?
Vocoder audio is fine



Vocoder:


your tts training looks broken.
I think the problem is, that you set “spec_gain”: 1 but don’t provide a “stats_path”.
Try using “spec_gain”: 20 and retrain your tts. The same goes for the vocoder i guess.

2 Likes

Thanks, I will try that

Thanks @sanjaesc for checking and @Dias you can recheck all values with Thorsten’s config which worked fine for German. And check this and this for what they should look like.

The training went well, I’m gonna refactor configs for different language. Do you know if providing “stats_path” gives better results than setting “spec_gain” to 20?

I would assume the results should be better, because the normalization will be optimized for your dataset.

You will need to use https://github.com/mozilla/TTS/blob/master/TTS/bin/compute_statistics.py
to compute the stats_file.

2 Likes