Use grep. For example just looking at .py files
(.virtualenv) kdavis-19htdh:DeepSpeech kdavis$ find . -name "*.py" -exec grep 16000 {} /dev/null \;
./util/flags.py: f.DEFINE_integer('audio_sample_rate', 16000, 'sample rate value expected by model')
./bin/import_cv2.py:SAMPLE_RATE = 16000
./bin/import_fisher.py: origAudios = [librosa.load(wav_file, sr=16000, mono=False) for wav_file in wav_files]
./bin/import_swb.py: audioData, frameRate = librosa.load(temp_wav_file, sr=16000, mono=True)
./bin/import_ts.py:SAMPLE_RATE = 16000
./bin/import_cv.py:SAMPLE_RATE = 16000
./bin/import_gram_vaani.py:SAMPLE_RATE = 16000
./bin/import_lingua_libre.py:SAMPLE_RATE = 16000
./bin/import_aishell.py: durations = (df['wav_filesize'] - 44) / 16000 / 2
./examples/vad_transcriber/wavTranscriber.py: audio_length = len(audio) * (1 / 16000)
./examples/vad_transcriber/wavTranscriber.py: assert sample_rate == 16000, "Only 16000Hz input WAV files are supported for now!"
./examples/vad_transcriber/wavSplit.py: assert sample_rate in (8000, 16000, 32000)
./examples/mic_vad_streaming/mic_vad_streaming.py: RATE_PROCESS = 16000
./examples/mic_vad_streaming/mic_vad_streaming.py: """Return a block of audio data resampled to 16000hz, blocking if necessary."""
./examples/mic_vad_streaming/mic_vad_streaming.py: DEFAULT_SAMPLE_RATE = 16000
./stats.py: parser.add_argument("--sample-rate", type=int, default=16000, required=False, help="Audio sample rate")
./native_client/python/client.py: sox_cmd = 'sox {} --type raw --bits 16 --channels 1 --rate 16000 --encoding signed-integer --endian little --compression 0.0 --no-dither - '.format(quote(audio_path))
./native_client/python/client.py: return 16000, np.frombuffer(output, np.int16)
./native_client/python/client.py: if fs != 16000:
./native_client/python/client.py: audio_length = fin.getnframes() * (1/16000)
./native_client/python/__init__.py: def setupStream(self, pre_alloc_frames=150, sample_rate=16000):