Still getting these loss spikes across configurations.
I used graves attention model config from:
(attached mine just in case)
config.json.zip (3.2 KB)
I pulled the most recent (9b97430a74fd5b43b5e0c0b11fddfeb38e60bd92) and now getting an odd NaN issue.
I’m going to sanity check whatever I can (data etc.), but if anyone can see the issue, I’d love to know.
Validation
| > TotalLoss: 6.85920 PostnetLoss: 0.12684 - 0.12684 DecoderLoss:0.21654 - 0.21654 StopLoss: 6.45301 - 6.45301 AlignScore: 0.4279 : 0.4279
warning: audio amplitude out of range, auto clipped.
| > Synthesizing test sentences
| > Training Loss: 0.15940 Validation Loss: 0.12559
Number of outputs per iteration: 3
Epoch 358/1000
| > Step:16/92 GlobalStep:21075 PostnetLoss:0.32882 DecoderLoss:0.45036 StopLoss:0.17568 AlignScore:0.1434 GradNorm:4.90582 GradNormST:2.12395 AvgTextLen:59.9 AvgSpecLen:336.6 StepTime:1.03 LoaderTime:0.02 LR:0.000100
| > Step:41/92 GlobalStep:21100 PostnetLoss:0.28766 DecoderLoss:0.40615 StopLoss:3.42795 AlignScore:0.1384 GradNorm:46714.50217 GradNormST:13.98048 AvgTextLen:93.1 AvgSpecLen:517.1 StepTime:1.37 LoaderTime:0.02 LR:0.000100
| > Step:66/92 GlobalStep:21125 PostnetLoss:0.42214 DecoderLoss:0.55323 StopLoss:0.23890 AlignScore:0.0948 GradNorm:354.74020 GradNormST:2.37551 AvgTextLen:116.8 AvgSpecLen:651.6 StepTime:1.67 LoaderTime:0.01 LR:0.000100
| > Gradient is INF !!
| > Gradient is INF !!
| > Gradient is INF !!
| > Gradient is INF !!
| > Step:91/92 GlobalStep:21150 PostnetLoss:nan DecoderLoss:nan StopLoss:nan AlignScore:nan GradNorm:nan GradNormST:nan AvgTextLen:149.2 AvgSpecLen:776.4 StepTime:0.81 LoaderTime:0.01 LR:0.000100
[WARNING] NaN or Inf found in input tensor.
[WARNING] NaN or Inf found in input tensor.
[WARNING] NaN or Inf found in input tensor.
[WARNING] NaN or Inf found in input tensor.
| > EPOCH END – GlobalStep:21151 AvgPostnetLoss:nan AvgDecoderLoss:nan AvgStopLoss:nan AvgAlignScore:nan EpochTime:120.15 AvgStepTime:1.29 AvgLoaderTime:0.03
[WARNING] NaN or Inf found in input tensor.
[WARNING] NaN or Inf found in input tensor.
[WARNING] NaN or Inf found in input tensor.
[WARNING] NaN or Inf found in input tensor.
Validation
| > TotalLoss: nan PostnetLoss: nan - nan DecoderLoss:nan - nan StopLoss: nan - nan AlignScore: nan : nan
! Run is kept in /nobackup/myadav1/TTS/output/mky_ljspeech_graves2-bn-March-06-2020_08+21PM-9b97430
Traceback (most recent call last):
File “train.py”, line 715, in
main(args)
File “train.py”, line 634, in main
epoch)
File “train.py”, line 450, in evaluate
eval_audio = ap.inv_mel_spectrogram(const_spec.T)
File “/home/users/myadav/venvs/sri_tts/TTS/utils/audio.py”, line 174, in inv_mel_spectrogram
return self.apply_inv_preemphasis(self._griffin_lim(S**self.power))
File “/home/users/myadav/venvs/sri_tts/TTS/utils/audio.py”, line 190, in _griffin_lim
angles = np.exp(1j * np.angle(self._stft(y)))
File “/home/users/myadav/venvs/sri_tts/TTS/utils/audio.py”, line 199, in _stft
win_length=self.win_length,
File “/home/users/myadav/.virtualenvs/sri_tts/lib/python3.6/site-packages/librosa/core/spectrum.py”, line 215, in stft
util.valid_audio(y)
File “/home/users/myadav/.virtualenvs/sri_tts/lib/python3.6/site-packages/librosa/util/utils.py”, line 275, in valid_audio
raise ParameterError(‘Audio buffer is not finite everywhere’)
librosa.util.exceptions.ParameterError: Audio buffer is not finite everywhere